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A Class of Nonlinear Birth-Death Stochastic Processes with Sub-Poissonian 
Statistics : Squeezed state of the particle number fluctuation 

Hidetoshi Konno * and Peter S. Lomdahl 

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA 

(Received July 6,  1999) 

A class of Birth-death stochastic processes which gives sub-Poissoiiian statistics with two Atate 
variables is demonstrated. Mathematical structures for the appearance of sub-Poissonian statis- 
tics are also clarified in connection with contracted one variable models and their associated 
physical interactions. 

. .  * . .  
--m-n of s- b i f l h - h c  

evaluation, system size expansion, sub-Poissonian statistics, nonequilibrium open systems 

91. Introduct ion 

The description of birth and death stochastic processes in open systems can be found in books 
by Feller’), Risken2), van Kampen3), Gardiner4), Montrol15), Williams6) and others. They describe 
many sophisticated stochastic processes and applications to physical, chemical, biological and en- 
gineering systems, most of them exhibiting super-Poissonian (SUPP) or Poissonian (P) statistics. 

In a previous paper,7) we have been investigating generalized birth-death stochastic processes 
of complicated nonlinear systems based on the system size expansion. Especially, we were in- 
terested in so called “rule-based dynamics” in nonequilibrium open systems wherein the chaotic 
movements of “particle”-like nonlinear excitations exist. One should note that in systems where 
creation/annihilation processes of “soliton” like excitations are taking place, the system is quite 
unstable and usually spatially inhomogeneous. Therefore, the asymptotic evaluation based on the 



linear Schrodinger equation,’) 1D complex Ginzburg-Landau e q u a t i ~ n , ~ ) ~ ~ ~ )  1D Benney equation 
12) and 1D Kuramoto-Sivashinsky equation 13) are stable and a unique stable steady-state exist.14) 

In conventional statistical mechanical studies, one makes notices of anomalous fluctuations asso- 
ciated with the nonequilibrium phase transitions near the onset of bifurcation points. Our approach 
is quite different from the conventional ones in that sense. We have shown the relevance of sub- 
Poissonian (SUBP) statistics for the creation/annihilation of “solitons” in systems described by 
“rule-based dynamics”. 

However, in the previous paper the relevant nonlinear system was restricted to contain a single 
state variable. Therefore, the feature of interactions among state variables are not easily seen 
from the given transitition probability W ( X , r ) .  Also, the minimum value of the variance to the 
mean-to-variance ratio F is 1/3 among the simple examples shown in the previous paper. In our 
numerical experiments for a driven nonlinear Schijdinger equation and the Benney equation, small 
F values less than 1/3 are obtained. It is not easy sometimes to understand what is the key factor 
among the possible origins determining the value of F such as higher order nonlinearity, memory 
effects due to feedback and so forth. 

The aim of the present paper is complimentary to our previous paper and also to  show generalized 
birth-death processes where SUBP statistics occur in open systems with two state variables and 
furthermore clarify physical mechanisms which give rise to the sub-Poissonian nature. The paper 
is organized as follows: Section 2 reviews typical generalized birth-death processes with one state 
variable. The key factor for determining the value of the variance to the mean value is clarified. 
Section 3 studies classification of statistics for a generalized stochastic process is performed with 
the use of the system size expansion method for two state variables based on the Haken-Zwanzing 
model. We will show several clear examples where SUBP statistics occurs. Here the physical mech- 
anisms that affect SUBP statistics will be clarified. Section 4 discusses “squeezed states of particle 
number Auctuation” in comparison with the squeezed state of light and clarifies the concept of our 
“squeezed state of particle-number fluctuation” in nonlinear classical stochastic systems. Section 5 
is devoted to concluding remarks. 



The transition probability (TP) W ( X ,  T ,  t )  is expressed as 

This is the simplest example for the TP in a nonlinear system. Surprisingly, this is the skele- 
ton mechanism of creationlannihilation of "soliton"-like excitations in the Benney, the complex 
Ginzburg-Landau and the Kuramoto-Sivashinsky equation. Following the method of asymptotic 
evaluation with the use of system size expansion due to Kubo et al 11), let us scale the TP into 

W ( Z ,  T ,  t> = a - l ~ ( x ,  T ,  t )  = bo6rIl+ a2z2dr,-1 (2.4) 

where z = W ' X ,  SI is the system size and bo and a2 are the scaled coefficients. The method 
of system size e ~ p a n s i o n ~ l ~ ~ )  gives the equation for the mean values and the variance around the 
mean: 

I I 

% b k - + - t Y l ,  
\ I n  r\  - - 

where (s2-'X> = (z) = + Q - ~ U O  + 5 2 - 3 / 2 ~ 1  and c ~ ( z )  = E,. ' P ~ w ( z , ' P , ~ )  . 
The first and the second moments become 

From the moments, we have the mean and the variance at the steady state as 

1 
ys = E and us = p,. 

This model thus gives SUBP statistics with the following variance-to-mean ratio F as 

which is independent on the transition rates (bo and a2) of the TP. 

(B) Tri-molecular reaction 
consider the scaled TP with third order nonlinearity written as 



Therefore, we have SUBP statistics with 

(2.11) 

which is the same value as for the former case of TP in eq.(2.4) with second order nonlinearity. 
Also the value of F is independent of the transition rates bl and a3. One should note that the TP 
in eq.(2.9) is a naive mathematical generalization from the TP in eq.(2.4) and that the physical 
significance of the value of F must be carefully interpreted. 

Now let us assume the following physical process of triple molecular reactions: 

A + X + $ i X  

B + X d k 3 C  . 
and 

The scaled TP should be 

(2.12) 

(2.13) 

~ ( 2 ,  T ,  t) = blZSr,1+ a3z36r,-2 + a1z6rS-1 * (2.14) 
- - (W * . .  . .  

-- S=--d+=-(-k - "1 I \  

non-trivial steady state is (bl  - a i )  > 0. With the use of the same scaling technique, the F value 
is obtained as 

3(1 - $R) F =  
4(1 - R) ' (2.15) 

where 
R = -  a1 (0 < R <  1) . (2.16) 

Note that the two limiting cases (a) R d 0, F -+ 3/4 and (b) R t 1, F + 00. The divergence of F 
(also a,) in the case (b) is ascribed t o  a critical fluctuation near the transition point R = l(a1 = b l ) .  
As seen in Fig.1, (i) SUBP statistics can appear in the range 0 < R < 1/3; (ii) P statistics with 
F = 1 appears for R = 1/3 (3al = b l ) ;  (iii) SUPP statistics can appear in range 1/3 < R < 1, 
This example shows that there exists a physical or chemical process giving SUBP + P + SUPP 
statistics ( L e . ,  3/4 < F < 00) with third order nonlinearity. An interesting aspect is that the value 
of 8' is independent of the value of a3, but its lower bound is determined by the competing order 
of nonlinearities assciated with death and birth rates as shown below. 

bl 

2.2 Effect of Higher Order Nonliearity 
To exhibit the effect of higher order nonlinearity, let us take the scaled TP 

w ( z , r )  = bznS,.,l + azmS,.,-l (n < m) . (2.17) 

This generalized TP includes (2.4) and (2.9). One can easily show from yB = @/a)-* and 
os = (b /a )  that the variance-to-mean ratio as 

A 

1 
m - n  

F=-, 

4 

(2.18) 



which is independent of the values of the birth-death rates (a  and b)  and is determined by the 
difference (m - n) of the orders of different kinds of nonlinearity. When one takes n = 1 and m = 5 
(the fifth order nonlinear term is relevant), F = 1/4. As the difference of ( m  - n) increases, the 
value of F decreases. 

How the situation changes when three different kinds of nonlinearity is incorporated. We have 
shown ')J3) that in the case of the scaled TP as w ( x , ~ , t )  = blxSr, l  + ap26,,-1 + a3z3&,-1, the 
F value is within the range 1/2 < F < 1 and varies as a function of R = bla3/4a2. How is the 
situation when fifth order nonlinearity is incorporated to in addition to third order. We examine 
the scaled TP as 

w ( z , T , ~ )  = b l ~ 6 f , l  + a3~36,. ,-1 + u ~ x ~ ~ ~ , - ~  . (2.19) 

Since 
5 (2.20) ~ ~ ( 2 )  = b l x  - a3x3 - agx5 and cp(z)  = b lx  + a3a: 3 + a52 , 

there is only the non-trivial steady-state value 

on account of the fact that a2 > 0. Thus we have 

where 

(2.22) 

(2.23) 

Note that the two limiting cases (a) R -+ 0, F + 1/2 (cf. the TP in eq.(2.17) with m = 3 and 
n = 1) and (b) R 3 00, F -+ 1/4 (cf. the TP in eq.(2.17) with m = 5 and n = 1). Therefore, the 
existence of SUBP statistics with 1/4 < F < 1/2 shown in Fig.2 is easily verified. 

As seen in this section, the competing higher order nonlinear terms seem to  be relevant t o  reduce 
the value of F .  But it is not clear what physical processes and/or what complex interactions 
(feedback) among multiple state variables occur. So we will consider a couple of illuminating 
examples with two state variables which can be classified into the generalized Haken-Zwanzing 
model. 

$3. Generalized Birth-Death Process within Haken-Zwansing Model 

' Generally speaking, the exact analysis is not possible except for a few simple examples. We need 
to  adopt some asymptotic evaluation and numerical estimation of the 
systematic method to perform the asymptotic evaluation is the syst 
been developed by van pen 3, and Kubo et al. 11) The result is summariz 



The stochastic process of state variable j? which has the probability distribution P ( 3 , t )  is 
described by the Master equation ; 

a --P(z,t) at == - / ( A l i ) w ( Z  -+ j? + A z , t ) P ( z , t )  , 

+ (AR)W(j?  - Aj? -+ - f , t ) P ( z  - A x , t )  , (3.1) S 
where W ( 2  -+ 2 + A 2 , t )  is the transition probability (TP) from 2 to z + A 2  , which is rewritten 
as W ( 2 ,  Ai?, t )  for abbreviation. 

Taking into account the feedback from many body effects due to the interaction of particles 
and/or state variables, the transition probability (TP) per unit time at t ,  W ( x , A j ? , t )  in the 
Master equation may be expressed by 

W(.Z,A.Z, t )  = Slw(l,Aj?,t)  , (3.2) 

where s1 is the system size and 
-- 3='= Q-12 . (3.3) -- 

The method of system size expansion 3)911) gives the equations for the mean and the variance 
around the mean (cf. eqs.(102)-(104) in ref.11): 

and 
8 ,  1 
-u at = c'1(y')u + $y)a ) 

where 
(n-1.2) = (3) = y'+ n-lu' + o(n-2) , (3.7) 

and the moments are given by the formula; 

ck(l) = 1 d ( A j ? ) ( A 3 ) ' ~ ( 3 ,  A 2 ,  t )  . (3.8) 

B At the steady state, Le.  &y' = z u  = 0, the mean y"g is determined by 

Cl(iL) = 0 * (3.9) 

In contrast to the one state variable case, the expression of the regression matrix K, and the 
diffusion matrix D, at the steady state must be calculated according to the formula 

(3.10) 

6 



and 
(3.11) 

There are a number of important relations among the regression matrix K,, the diffusion matrix 
D, , the covariance us and the matrix of irreversible circulation as : 

(3.12) 

(3.13) 

and 
1 
2 us = --K,l(D, + 2a,) . (3.14) 

So the determination of the variance is sometimes cumbersome but the manipulations are straight- 
forward. 

We will consider cases where the relevant stochastic equations are classified into the Haken- 
Zwanzing model. The stochastic Haken-Zwanaing model is written as 

1 -- -fkx = .(X) - v(X)Y + Fx( t )  dt (3.15) 

and 
(3.16) 

where u ( X ) ,  v ( X ) ,  w(X) and r(X) are nonlinear functions of X. In the usual framework of the 

d 
d t  -Y = w(X) - r(X)Y + FY(t )  , 

Langevin approach, the following Gaussian “white noise” property of the fluctuating forces are 
assumed: 

(Fx( t ) )  = ( F Y W  = 0 I 

(Fx(t)Fx(t’)) = Dxx6(t - t’) , (FY(t)FY(t’)) = D y y 6 ( t  - t’) 
(3.17) 

(3.18) 

and 
(Fx(t)Fy(t’)) = DxyG(t - t’) . (3.19) 

Since we take the Master equation approach the correlation of the two kind of fluctuating forces 
should be incorporated into the TP. Actually, the off-diagonal part of the diffusion matrix is eval- 
uated from the second moment c2(&). 

(A) Logistic-Verhulst Model with Feedback ( u ( X )  = IclX,u(X) = knX,w(X)  = k3X and 
y(X) = k4) : 

x 4 1  2x (3.20) 

X+Y-+‘CzC . (3.21) 

x +k3 Y 



and 
Y - i k 4 C  I (3.23) 

This interaction scheme corresponds to the scaled TP, 

This model appears in many different kinds of fields such as physics, chemistry, biology, sociology, 
ecology and engineering.17)f21) 

By noticing the first and the second moment 

(3.25) 

and 

(3.26) 

we have the non-trivial steady-state mean, 

and the regression matrix around it, 

(3.28) 

Since the characteristic equation is Det(XE - K,) = X2 f a 4 X  + blur = 0, the fixed point $, is always 
stable. One should also note that the off-diagonal element of the diffusion matrix D, E c2(zS,y,) 
is zero. Namely, the two fluctuating forces of the corresponding Langevin equation are statistically 
independent. 

With the use of the formula shown in Appendix A, we have the xz-component of the variance as 

bl b l  
b3 a4 

f$=) = (1 + - + -)xs . 
Hence the variance-to-mean ratio becomes 

(3.29) 

(3.30) 

Thus F takes a value greater than 1 for any value of bl,u2,b3,a4 (ie., SUPP statistics) at the 
steady state z, and y,. In order to  have SUBPstatistics, one must account for higher order nonlinear 
terms and/or other memory (feedback) effect. 
(B) Bmsselator ( u ( X )  = A - (B + l ) X , v ( X )  = -X2,w(X) = BX and r ( X )  = X2): 

A + X  (3.31) 

b 



2 X + Y + 3 X  . (3.32) 

B + X - + Y + D  (3.33) 

and 
X + E .  (3.34) 

The scaled TP in conjunction with the Brusselator becomes 

The first and the second moment take the form: 

a 4- x2y - bx - x 
-x2y f bx 

C l ( X , Y )  = 

and 
a + x 2 y + b x + x ,  -X 2 y - b x  

-x2y - bx , x2y + bx 
CZ(X,Y) = 

(3.36) 

(3.37) 

-- The value of the off-diagonal matrix element of the diffusion matrix U ,  = c2(zs,ys) becomes 
negative for any values of x and y since the number density x and y are positive definite quantities. 

The steady-state mean becomes 

Since the regression matrix is 

(3.39) 

the characteristic equation becomes Det(XE - K,) = X2 + I'X + A = 0, where I' = -TT(K,)  = 
1 + a2 - b and A = a2. When r > 0, the fixed point Cs in eq.(3.38) is stable. Within the stable 
region the xc2 component of variance a?) becomes 

a3 + ab + a 
a 2 + l - b  * 

(p = 

('.) a2 + 1 + b 
x, a 2 + 1 - b  

Hence, we have only SUPP statistics for the Brusselator, i.e. 

- > 1 .  0, F = - -  

(3.40) 

(3.41) 

Figures 3 and 4 show the variations of t~!(Ez) and F as a function of a for various values of 



also note that we are considering the statistics in the stable “rule-based-dynamics” which has no 
direct connection with chemical oscillations, pattern formations and coherent excitations described 
by partial differential equations (PDEs). But there might exist indirect connection between the 
“rule-based-dynamics” of particle-like excitations in high dimensional chaotic systems and the phe- 
nomena described by PDEs. Therefore, the “rule-based -dynamics” applied to the chaotic complex 
oscillations in space-dependent Brusselator is our main interests and i t  might be subjected to  a 
nonlinear stochastic process with global stability. I 

(C) Creation and annihilation of “soliton” (a high dimensional chaos) ( u ( X )  = k3X - 
kzX2,v(X) = -IC1 - k4X,w(X) = k3X and y ( X )  = kl  + k4X): 

Y 4 1  x (3.42) 

2X--+‘“ZX . (3.43) 

and 
X + Y + k X  (3.44) 

-- 
Here X denoteS“so1iton” and Y denotes “radiation”. The scaled TP associated with the above 
“soliton”- “radiation” interaction scheme reduces to 

The first and the second momenbare 

bl y - a2x2 + b3x - a4xy 
-bly + b3x - a4xy 

Cl(X,Y) = (3.46) 

and 

(3.47) 
bly + a2x2 + b3x + arxy , 

* ,  
-big + b3x + a4xy 
bly + bgx + arxy 

There are three different steady-state solutions for q(&) = cl(zs,ys) = 0 ( i.e., the equation by 
contracting ys becomes a,(aqaqx? + a2blx8 - Zblb3) = 0). The non-trivial steady-state mean y’B 
among them is 

Since 

(3.48) 

(3.49) 



and A > 0) for any values of b l ,u2 ,  b3 and a4. So the fixed point & is always stable. The 53: 

component of the variance for this steady-state is expressed by 

Hence we have 

(3.50) 

(3.51) 

The expression is a complicated function in terms of the four birth-death rates ( b l ,  a2, b3 and a4), 
and it is quite difficult to understand which statistics can appear. So let us rewrite (3.51) in the 

(3.52) 

where 
(3.53) a4 b3 

a2 bl 
R1= - and R2=- (O<R1 <CQ and O < R 2 < o o ) .  

By noticing the limiting values (i) R1 3 0 and R2 -+ 00, F -+ 2/3, (ii) R:! 3 0, F + 3/2, 

7- ---+1-1-+ : S f a - i t f f f l & )  & : =G7 F : e e + - S w :  F : =-%lm+s . .  
+ P + SUPP statistics can appear depending on values of R1 and R2. 
(D) Edelstein’s model ( a biochemical reaction) 22) ( u ( X )  = A X - X 2 + y ~ , ~ ( X )  = X + l , w ( X )  = 

2yT a n d y ( X ) = X + B + 2 ) :  
A + X + 2 X ,  (3.54) 

X + Y + C  (3.55) 

and 
C + Y + B ,  (3.56) 

where A and B are the concentrations of externally-controllable molecules,.and Y and C are 
enzymes and their complex. Their concentrations satisfy the conservation law 

Y + C = Y x  $ (3.57) 

where Yx is a constant and is fixed t o  be a nonzero value. The scaled TP corresponding to  the 
above reaction scheme becomes 

The first and the second moment are 



The steady-state mean g5 is given by 

(3.60) 

(3.61) 

where xs is given by the solution of the polynomial equation, 

2: +. (2 + b - a)~: + ( y ~  - 4 2  + b ) ) ~ ,  - byT = 0 . (3.62) 

As is seen in the book by Glansdorff and Prigogine,22) there are multiple non-trivial steady-states 
(Gal, g52 and &3) depending on values of a, b and y ~ .  Without loss of generality, one can assume 
that z51 < x.92 < zS3. When b = 0.2 and y~ = 30, the multiple-steady states appear in the range 
aCl(= 8.37) < a < ac2(= 8.555) as shown in Fig.5. The two fixed points y'91 and &3 are stable, and 
the other one gs2 is unstable. The variance op") is expressed in terms of xs,ya,a,  b and YT as 

1 (2.9 + + 2)2(a + 2: + Y S ~ S  + YT - Ye) + (e, + 1 ) 2 ( ~ e e ~  + by, + 4YT - 43.9) 
+'z FA 

, (3.63) 
- 2(% + + b + 2 ) ( Y S G  + 23/73 - 2%) 

r A  
where r = 32,+ b+ 2 - a+y, and A = 22; + (2b+4 - a ) z ,  + (b+  l)ys - a(b+ 2) . When b = 0.2 
and y~ = 30, a?") and F(= a?")/z,) for two stable fixed points &I and gs3 are calculated as a 

function of a as shown in Figs.6 and 7. One can see in Fig. 6 that a:?) + 00 a 3 ac2 and 
("") -+ 00 as a -+ aci. Also one can see that (a) SUBP+P+SUPP statistics appears in both gal 083 

and ga3 branches; (b) SUBP statistics appear in the range far away from acl for 2 , 3 ,  and the range 
far away from ac2 for zsi. Considering the physical significance of the appearance SUBP statistics 
in biological and biochemical systems might be an interesting subject. 

Now let us reconsider triple molecular reactions with two state variables (e, y) which can be reduced 
to the GL type equation as discussed in section 2.1(B) when the adiabatic elimination of y is 
applied. There exist at least two different types of interaction schemes with two state variables 
(z,y) in conjunction with the triple molecular reaction in eq~~(2.12) and (2.13) other than the 
Brusselator : 

(E) I23.i-molecular reaction 

(i) Case I ( u ( X )  = k i X , v ( X )  = k 2 X , w ( X )  = k3X2 and r ( X )  = k4 + k2X);  

x-+"2x , (3.64) 

X + Y + k 2  B , (3.65) 

12 



2 x - + k 3 Y  , (3.66) 

and 
Y d 4 C .  (3.67) 

The scaled TP is written as 

Since the first and the second moment are 

blx - a2xy 
b3x2 - azxy - a4y 

C l ( X , Y )  = 

and I \ 

a2xy + a4y + b3x2 

(3.69) 

(3.70) 

the non-trivial steady-state 

is always stable since I? = -TT(K,) = a2x, + a4 > 0 and A = -Det(K,)  = a2x,(2b3x5 - bl) = 
azr,\/bf + 4blb3a4/a2 > 0. The expression of F is reduced to 

where 
R1 = a ~ / b l  and R2 = b3/az . (3.73) 

Note that there is no constaint for the paramaters ( b l ,  a2, b3 and aq), 0 < 81 < 00 and 0 < R2 < 00, 

For special limiting cases are (a) R1 -+ 0 and R2 -+ 0 , F -+ 1 ; (b) R1 + 00 and R2 -$ 00 , 
F 3 0 ; ( c )  Ri 3 0 and R2 00 , F 3 00 . So it is shown that SUBP + P + SUPP statistics 
(112 < F < m) can appear depending the values of R1 and R2. 

(ii) Case XI ( u ( X )  = Ic iX ,v(X)  = Ic2X2,w(X) = k3X and r ( X )  = k4); 

X + " 2 X  , (3.74) 

2 X + Y - + X  , (3.75) 

X - + ' " 9 Y ,  (3.76) 

and 
Y - + ' " 4 C .  (3.77) 

The corresponding scaled TP is written as 



Since the first and the second moment are 

(3.79) 

and 

(3.80) 
a2x2y 

c2(s ,Y)  = ( + a2z2y ' 
* ,  azx2y + b3x + a4y 

the non-trivial steady-state exists under the condition 

b3 > bl , 
which is given by 

(3.81) 

(3.82) 

Since I' = -TT(K,) = bi + a4 + bictq/(bg - b i )  and A = -Det(K,) = a2b3 - 2bia4 + b3a4, the fixed 
point (3.80) is stable for 

a2b3 > bla4 . (3.83) 
-~ - 

The expression of F becomes 

where 

(3.85) 

The range of variations for the parameters R1, R2 and R3 are determined by the existence of the 
non-trivial steady (3.81) state and the stability requirement (3.83). It is shown that 0 < F < 00. 

Interestingly, the lower bound of F becomes zero. To see the nature clearly, let us show a few 
numerical examples in Figs.8(a) (R1 = 1,Rz = 1.05; 0 < R3 < 1.05), (b) (R1, R2 = 10.5; 0 < R3 < 
10.5) and (c) (Ri = 1, R2 = 105; 0 < R3 < 105); the minimum value of F (Fmin) decreases and the 
position of R3 taking the Fmin increases as R2 increases in keeping R1 constant. 

Hence the disapperance of discretized F value independent of birth-death rates and the possibility 
of the appearance of SUBP + P + SUPP statistics are shown associated with the complicated 
nonlinear two component models (C)-(F) with feedback. 

$4. Squeezed State of Particle Number Fluctuation 

We have demonstrated that the sub-Poissonian statistics is ubiquitous in physical, chemical, bi- 



As pointed out in our previous paper~,~)7*)7’~)7’~) the physical situation we are concerned with 
is the noise-suppression mechanism and the squeezed state of particle number fluctuations such 
as coherent excitations like “soliton”, “shock”, “kink” or “hole”-like nonliner excitation as seen in 
section 3. In the case of the “squeezed state of light”, the photon-number fluctuation is squeezed 
due to the anti-bunching of photons, which is a typical quantum effects. 

The squeezed state of (‘soliton’’ number fluctuation 8)712)i14) 

is also characterized by the anti-correlation of the “soliton”- “radiation” interaction. 
But one must notice that in the case of the Logistic-Verhulst model, the sub-Poissonian nature is 

not realized even if the anti-correlation of the relaxation matrix and the off-diagonal element of the 
diffusion matrix is zero. Also one should note that in the case of the Brusselator in section 3 (B), 
the negative correlation of the off-diagonal part of the diffusion matrix does not work to provides 
the sub-Poissonian statistics. 

9a* CmTcma.rPlgn;emarKs -- 

We have developed a classification method of statistics for a generalized birth-death process 
with multiple state variables specifically in the two component systems within the Haken-Zwanzing 
model and demonstrated that the stochastic processes with SUBP statistics are ubiquitous in 
nonequilibrium open systems as shown and summarized in Tables I and 11. The effects of higher 
order nonlinearity upon the value of the variance-to-mean ratio was also clarified. It was shown 
that higher order nonlinearity plays an important role for the occurrence of SUBP statistics. The 
necessary conditions for SUBP was also clarified. 

’ 

The.physica1 significance of the difference between the one state variable case and those of the 
corresponding two-state variables cases come from the feasibility condition of the adiabatic elim- 
ination of the second variable y. If we contract the state variable y by the adiabatic elimination 
for the Logistic-Verhulst model, the fluctuation of particle number o is subjected to the Poissonian 
statistics. 

In order to obtain a small value of F which have been observed in numerical experiments in a 
driven nonlinear SchrSdinger equation and the Benney equation,14) one needs to  construct a model 
with multiple state variables and higher order nonlinearity. So to explain the situations where small 
values of F appears, one must take into account the negative correlation of the diffusion matrix, 
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Appendix A 

Expression of Variance in 2 Component System 

Let B the relaxation matrix and D, the diffusion matrix at the steady state : 



The zz component of the variance a?) is given by 

where 
r = T T ( B )  , A = Det(B)  , 

KLi) = L and KLi) = (B,,)2D,, - 2B,,BYyD,, + (B,,)2D,, , 
On the other hand, the irreversible circulation of fluctuation cy,, 20) is given by 

1 Lgj) 
2 r  

= -- 
where 

I Scaled Transition Probability F-value Statistics 

sonian, SUBP = Sub-Poissonian and SUPP = Super-Poissonian Statistics 



Statistics for various combinations of birth and death rates in the transition probability (TP) 

~ ~ 2 ~ ( r n , n ) e ~ y  ] Srz,m6rp,n in the 2-components nonlinear systems are listed in this table : 
W(2,Y,Tz,Ty) = [ ao(m,4 + a z ( w 4 2  + ay(m,n)y -I- %y(m,n)~y +a22(m,n)e2 + a2y(m,n)y2 I- 

(F) 

(A) Logistic-Verhulst Model 
(B) Brusselator 
(C) Soliton-radiation interaction Model 
(D) Edelstein Model 
(E) Tri-molecular Reaction Model (I) 
(F) Tri-molecular Reaction Model (11) 

* 1 (LO) + (0,1) 1 (0~1) I * I * I * I (-1,-1) I O <  F < 00 I SUBP + P + SUPP 1 

a2 

I I 



Figure Captions 

Fig.1: The variation of the variance-to-mean ratio F in eq.(2.15) as a function of R = al/bl for 
a one-variable model of tri-molecular reaction. The variable range of R, 0 < R < 1 is from the 
requirement for guarantee the existence of the non-trivial (2, # 0) steady state. 

Fig.2: The variation of the variance-to-mean ratio F in eq.(2.19) its a function of R = 4blas/ai 
for a one-variable model of tri-molecular reaction. The variable range of R is 0 < R < 00 since the 
non-trivial steady state is stable for any b 1 , ~ 3  and a5. 

Fig.3: The variation of the variance 6:" in eq.(3.40) as a function of a for the stochastic Brusse- 
lator for b =: 1/2,3/4 and 1. a:" for b = 3/4 and 1 tend to  zero as a is approaching to zero. 

Fig.4: The variation of the variance-to-mean ratio F in eq.(3.41) as a function of a for the 
stochastic Brusselator for b = 1 / 2  (dashed line), 3/4(dotted line) and l(so1id line). Although cry 
for b = 3/4 and 1 tend to zero as a is, approaching to zero, F take values greater than 1. 

Fig.5: The variation of the steady states xsj (j = 1,2,3) (z,l < 082 < 2,3) as a function of a for 
the Edelstein model for b = 0.2 and y~ = 30. These three-steady state xsj ( j  = 1,2,3) coexist for 
8.37 < a < 8.555. The steady-state xS2 ,  which is depicted by the dotted line, is always unstable. 

Fig.6: The variations of the variance osl and os3 in eq.(3.63) as a function of a for the Edelstein 
model for b = 0.2 and QT = 30. of? < of$ for a < 8.35, and ot? > oT$ for a > 8.35. 

Fig.7: The variation of the variance-to-mew ratio F as a function of a for the Edelstein model 
for b = 0.2 and v~ = 30. F (at the branch zcsl) > F (at the branch z,3) in the parameter range 
a > 8.39. 



0 < R3 < 1.05; (b) R1,Rz = 10.5, 0 < R3 < 10.5; and (c) R1 = 1,232 = 105, 0 < R3 < 105). By 
observing these, one can see that tihe lower bound of F tends to zero as R2 increases. 
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